北京小學(xué)奧數(shù) 每題懸賞100w美元:世界七大數(shù)學(xué)難題
點(diǎn)擊領(lǐng)取>>>1-6年級(jí)奧數(shù)知識(shí)點(diǎn)講解、講義及奧數(shù)競(jìng)賽真題、初高中數(shù)學(xué)競(jìng)賽真題
2000年初美國(guó)克雷數(shù)學(xué)研究所的科學(xué)顧問(wèn)委員會(huì)選定了七個(gè)“千年大獎(jiǎng)問(wèn)題”,克雷數(shù)學(xué)研究所的董事會(huì)決定建立七百萬(wàn)美元的大獎(jiǎng)基金,每個(gè)“千年大獎(jiǎng)問(wèn)題”的解決都可獲得一百萬(wàn)美元的獎(jiǎng)勵(lì)。
這七個(gè)問(wèn)題是:霍奇猜想、NP完全問(wèn)題、龐加萊猜想、楊-米爾斯存在性和質(zhì)量缺口、黎曼假設(shè)、納衛(wèi)爾-斯托可方程、BSD猜想。
每天叫醒你的不是鬧鐘,而是夢(mèng)想和態(tài)度
難易指數(shù):★★★★★
適宜對(duì)象:數(shù)學(xué)興趣班
本期編號(hào):D00089
關(guān)鍵詞:世界七大數(shù)學(xué)難題
世界七大數(shù)學(xué)難題
世界七大數(shù)學(xué)難題, 又稱千禧年大獎(jiǎng)難題,是七個(gè)由美國(guó)克雷數(shù)學(xué)研究所于2000年5月24日公布的數(shù)學(xué)猜想。
根據(jù)克雷數(shù)學(xué)研究所訂定的規(guī)則,任何一個(gè)猜想的解答,只要發(fā)表在數(shù)學(xué)期刊上,并經(jīng)過(guò)兩年的驗(yàn)證期,解決者就會(huì)被頒發(fā)一百萬(wàn)美元獎(jiǎng)金。
這些難題是呼應(yīng)1900年德國(guó)數(shù)學(xué)家大衛(wèi)·希爾伯特在巴黎提出的23個(gè)數(shù)學(xué)問(wèn)題。
希爾伯特23問(wèn):解決其中任何一個(gè),你就是名副其實(shí)的數(shù)學(xué)家
1.霍奇猜想
霍奇猜想是代數(shù)幾何的一個(gè)重大的懸而未決的問(wèn)題。它是關(guān)于非奇異復(fù)代數(shù)簇的代數(shù)拓?fù)浜退啥x子簇的多項(xiàng)式方程所表述的幾何的關(guān)聯(lián)的猜想。它在霍奇的著述的一個(gè)結(jié)果中出現(xiàn),他在1930至1940年間通過(guò)包含額外的結(jié)構(gòu)豐富了德拉姆上同調(diào)的表述,這種結(jié)構(gòu)出現(xiàn)于代數(shù)簇的情況(但不僅限于這種情況)。
二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對(duì)象的形狀的強(qiáng)有力的辦法?;鞠敕ㄊ菃?wèn)在怎樣的程度上,我們可以把給定對(duì)象的形狀通過(guò)把維數(shù)不斷增加的簡(jiǎn)單幾何營(yíng)造塊粘合在一起來(lái)形成。
這種技巧是變得如此有用,使得它可以用許多不同的方式來(lái)推廣;最終導(dǎo)致一些強(qiáng)有力的工具,使數(shù)學(xué)家在對(duì)他們研究中所遇到的形形色色的對(duì)象進(jìn)行分類時(shí)取得巨大的進(jìn)展。不幸的是,在這一推廣中,程序的幾何出發(fā)點(diǎn)變得模糊起來(lái)。在某種意義下,必須加上某些沒(méi)有任何幾何解釋的部件。
霍奇猜想斷言,對(duì)于所謂射影代數(shù)簇這種特別完好的空間類型來(lái)說(shuō),稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。
芬蘭數(shù)學(xué)家:威廉·霍奇
2.NP完全問(wèn)題
P/NP問(wèn)題是在理論信息學(xué)中計(jì)算復(fù)雜度理論領(lǐng)域里至今沒(méi)有解決的問(wèn)題,它被“克雷數(shù)學(xué)研究所”在千禧年大獎(jiǎng)難題中收錄。P/NP問(wèn)題中包含了復(fù)雜度類P與NP的關(guān)系。1971年史提芬·古克和Leonid Levin 相對(duì)獨(dú)立的提出了下面的問(wèn)題,即是否兩個(gè)復(fù)雜度類P和NP是恒等的(P=NP?)。
例:在一個(gè)周六的晚上,你參加了一個(gè)盛大的晚會(huì)。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認(rèn)識(shí)的人。宴會(huì)的主人向你提議說(shuō),你一定認(rèn)識(shí)那位正在甜點(diǎn)盤(pán)附近角落的女士羅絲。
不費(fèi)一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)宴會(huì)的主人是正確的。然而,如果沒(méi)有這樣的暗示,你就必須環(huán)顧整個(gè)大廳,一個(gè)個(gè)地審視每一個(gè)人,看是否有你認(rèn)識(shí)的人。
生成問(wèn)題的一個(gè)解通常比驗(yàn)證一個(gè)給定的解時(shí)間花費(fèi)要多得多。這是這種一般現(xiàn)象的一個(gè)例子。與此類似的是,如果某人告訴你,數(shù)13717421可以寫(xiě)成兩個(gè)較小的數(shù)的乘積,你可能不知道是否應(yīng)該相信他,但是如果他告訴你它可以分解為3607乘上3803,那么你就可以用一個(gè)袖珍計(jì)算器容易驗(yàn)證這是對(duì)的。
人們發(fā)現(xiàn),所有的完全多項(xiàng)式非確定性問(wèn)題,都可以轉(zhuǎn)換為一類叫做滿足性問(wèn)題的邏輯運(yùn)算問(wèn)題。既然這類問(wèn)題的所有可能答案,都可以在多項(xiàng)式時(shí)間內(nèi)計(jì)算,人們于是就猜想,是否這類問(wèn)題,存在一個(gè)確定性算法,可以在多項(xiàng)式時(shí)間內(nèi),直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。
不管我們編寫(xiě)程序是否靈巧,判定一個(gè)答案是可以很快利用內(nèi)部知識(shí)來(lái)驗(yàn)證,還是沒(méi)有這樣的提示而需要花費(fèi)大量時(shí)間來(lái)求解,被看作邏輯和計(jì)算機(jī)科學(xué)中最突出的問(wèn)題之一。它是斯蒂文·考克于1971年陳述的。
3.龐加萊猜想
如果我們伸縮圍繞一個(gè)蘋(píng)果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開(kāi)表面,使它慢慢移動(dòng)收縮為一個(gè)點(diǎn)。另一方面,如果我們想象同樣的橡皮帶以適當(dāng)?shù)姆较虮簧炜s在一個(gè)輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒(méi)有辦法把它收縮到一點(diǎn)的。我們說(shuō),蘋(píng)果表面是“單連通的”,而輪胎面不是。
大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來(lái)刻畫(huà),他提出三維球面(四維空間中與原點(diǎn)有單位距離的點(diǎn)的全體)的對(duì)應(yīng)問(wèn)題。這個(gè)問(wèn)題立即變得無(wú)比困難,從那時(shí)起,數(shù)學(xué)家們就在為此奮斗。
在2002年11月和2003年7月之間,俄羅斯的數(shù)學(xué)家格里戈里·佩雷爾曼在發(fā)表了三篇論文預(yù)印本,并聲稱證明了幾何化猜想。
在佩雷爾曼之后,先后有2組研究者發(fā)表論文補(bǔ)全佩雷爾曼給出的證明中缺少的細(xì)節(jié)。這包括密西根大學(xué)的布魯斯·克萊納和約翰·洛特;哥倫比亞大學(xué)的約翰·摩根和麻省理工學(xué)院的田剛。
2006年8月,第25屆國(guó)際數(shù)學(xué)家大會(huì)授予佩雷爾曼菲爾茲獎(jiǎng)。數(shù)學(xué)界最終確認(rèn)佩雷爾曼的證明解決了龐加萊猜想。
龐加萊:最后一位數(shù)學(xué)全才
龐加萊猜想模型:
4.楊-米爾斯存在性和質(zhì)量缺口
量子物理的定律是以經(jīng)典力學(xué)的牛頓定律對(duì)宏觀世界的方式對(duì)基本粒子世界成立的。大約半個(gè)世紀(jì)以前,楊振寧和米爾斯發(fā)現(xiàn),量子物理揭示了在基本粒子物理與幾何對(duì)象的數(shù)學(xué)之間的令人注目的關(guān)系。
基于楊-米爾斯方程的預(yù)言已經(jīng)在如下的全世界范圍內(nèi)的實(shí)驗(yàn)室中所履行的高能實(shí)驗(yàn)中得到證實(shí):布羅克哈文、斯坦福、歐洲粒子物理研究所和駐波。
盡管如此,他們的既描述重粒子、又在數(shù)學(xué)上嚴(yán)格的方程沒(méi)有已知的解。特別是,被大多數(shù)物理學(xué)家所確認(rèn)、并且在他們的對(duì)于“夸克”的不可見(jiàn)性的解釋中應(yīng)用的“質(zhì)量缺口”假設(shè),從來(lái)沒(méi)有得到一個(gè)數(shù)學(xué)上令人滿意的證實(shí)。在這一問(wèn)題上的進(jìn)展需要在物理上和數(shù)學(xué)上兩方面引進(jìn)根本上的新觀念。
5.黎曼假設(shè)
有些數(shù)具有不能表示為兩個(gè)更小的數(shù)的乘積的特殊性質(zhì),例如,2、3、5、7……等等。這樣的數(shù)稱為素?cái)?shù);它們?cè)诩償?shù)學(xué)及其應(yīng)用中都起著重要作用。
在所有自然數(shù)中,這種素?cái)?shù)的分布并不遵循任何有規(guī)則的模式;然而,德國(guó)數(shù)學(xué)家黎曼觀察到,素?cái)?shù)的頻率緊密相關(guān)于一個(gè)精心構(gòu)造的所謂黎曼zeta函數(shù)ζ(s)的性態(tài)。
著名的黎曼假設(shè)斷言,方程ζ(s)=0的所有有意義的解都在一條直線上。這點(diǎn)已經(jīng)對(duì)于開(kāi)始的1,500,000,000個(gè)解驗(yàn)證過(guò)。證明它對(duì)于每一個(gè)有意義的解都成立將為圍繞素?cái)?shù)分布的許多奧秘帶來(lái)光明。
黎曼假設(shè)之否認(rèn):
其實(shí)雖然因素?cái)?shù)分布而起,但是卻是一個(gè)歧途,因?yàn)閭嗡財(cái)?shù)及素?cái)?shù)的普遍公式告訴我們,素?cái)?shù)與偽素?cái)?shù)由它們的變量集決定的。具體參見(jiàn)偽素?cái)?shù)及素?cái)?shù)相關(guān)的知識(shí)。
“第五公設(shè)”之“歐氏幾何”、“羅氏幾何”與“黎曼幾何”,真理誕生于一百個(gè)問(wèn)號(hào)之后
6.BSD猜想
數(shù)學(xué)家總是被諸如
那樣的代數(shù)方程的所有整數(shù)解的刻畫(huà)問(wèn)題著迷。歐幾里德曾經(jīng)對(duì)這一方程給出完全的解答,但是對(duì)于更為復(fù)雜的方程,這就變得極為困難。
事實(shí)上,正如馬蒂雅謝維奇指出,希爾伯特第十問(wèn)題是不可解的,即,不存在一般的方法來(lái)確定這樣的方程是否有一個(gè)整數(shù)解。當(dāng)解是一個(gè)阿貝爾簇的點(diǎn)時(shí),貝赫和斯維訥通-戴爾(BSD)猜想認(rèn)為,有理點(diǎn)的群的大小與一個(gè)有關(guān)的蔡塔函數(shù)z(s)在點(diǎn)s=1附近的性態(tài)。
特別是,這個(gè)有趣的猜想認(rèn)為,如果z(1)等于0,那么存在無(wú)限多個(gè)有理點(diǎn)(解)。相反,如果z(1)不等于0。那么只存在著有限多個(gè)這樣的點(diǎn)。
7.NS方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現(xiàn)代噴氣式飛機(jī)的飛行。數(shù)學(xué)家和物理學(xué)家深信,無(wú)論是微風(fēng)還是湍流,都可以通過(guò)理解納維葉-斯托克斯(NS)方程的解,來(lái)對(duì)它們進(jìn)行解釋和預(yù)言。
雖然這些方程是19世紀(jì)寫(xiě)下的,我們對(duì)它們的理解仍然極少。挑戰(zhàn)在于對(duì)數(shù)學(xué)理論作出實(shí)質(zhì)性的進(jìn)展,使我們能解開(kāi)隱藏在NS方程中的奧秘。
聲明:本文信息來(lái)源于網(wǎng)絡(luò)整理,由網(wǎng)絡(luò)團(tuán)隊(duì)(微信公眾號(hào)搜索:北京小學(xué)學(xué)習(xí)資料)排版編輯,若有侵權(quán),請(qǐng)聯(lián)系管理員刪除。
掃碼添加“家長(zhǎng)論壇”微信好友(微信號(hào) 16619908263)
獲取1-6年級(jí)奧數(shù)知識(shí)點(diǎn)講解、講義及奧數(shù)競(jìng)賽真題、初高中數(shù)學(xué)競(jìng)賽真題
咨詢北京小學(xué)數(shù)學(xué)相關(guān)課程請(qǐng)撥打電話 16619908263 (同微信號(hào))
沒(méi)有找到相關(guān)結(jié)果
0 個(gè)回復(fù)