北京實驗中學初三2019.12月考試題與標答
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢
【注】 恒等式`(a+b)^2=(a-b)^2+4ab`
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數(shù)項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗當分兩步走。
一量表示另一量,`y=kx(k!=0)` 是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)是否,辨別需分兩步走。
一量表示另一量,`y=kx(k!=0)` 有沒有。
若有再去看取值,全體實數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,`y=kx(k!=0)` 是與否。
若有還要看取值,全體實數(shù)都要有。