2019~2020學年北京市陳經(jīng)綸中學初二八年級(上)期中數(shù)學試卷
2019~2020學年北京市陳經(jīng)綸中學初二八年級(上)期中數(shù)學試卷
初二數(shù)學知識點歸納(1)
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1、因式分解時,各項如果有公因式應先提公因式,再進一步分解。 2、因式分解,必須進行到每一個多項式因式不能再分解為止。 (四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。 上面兩個公式叫完全平方公式。 (2)完全平方式的形式和特點 ①項數(shù):三項
②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。 ③有一項是這兩個數(shù)的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二數(shù)學知識點歸納(2)